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Self-consistent charged-particle motion in negative-ion plasmas
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The self-consistent one-dimensional kinetic theory of relaxation of a low pressure quasineutral
negative-ion plasma destroyed in a limited region by a powerful laser light pulse is developed. Using the
self-similar method, well known in hydrodynamics, we examine the counterflow of the negative plasma
species and show the important role of the self-consistent electric field. The negative-ion temperature
determined from the ballistic model is valid when the ratio of negative-ion to positive-ion densities is
lower than 0.1. The overshoot of electron density that was observed experimentally is described by this
method. We show that the overshoot can disappear when the positive-ion mass or temperature goes up.
The self-similar solutions are also supported by numerous experimental results.

PACS number(s): 52.25.Dg, 29.25.Ni, 52.75.Di

I. INTRODUCTION

The negative-ion plasma is technologically important
in the production of energetic neutral beams for heating,
current drive, and diagnostics in fusion plasmas [1,2].
Therefore, the search for diagnostic techniques for these
plasmas is a very important problem.

A generally applicable experimental technique suitable
for studying negative-ion plasmas has been developed by
Bacal et al. [3-7]. This diagnostic technique is based on
laser photodetachment. Intense laser light rapidly disso-
ciates the negative ions into atoms and free electrons.
The measurement of the electron perturbation by a Lang-
muir probe gives important information about the
negative-ion plasma parameters. The technique involving
two laser pulses delayed in time was used for analyzing
the dynamics of plasma in the laser channel [4,5]. Using
this technique, Stern et al. [5] found experimentally and
described theoretically a basic transport process, the
“monopolar” drift, in which particles with the same
charge preserve local neutrality by counterflowing (in
contrast with the well-known ambipolar drift, which in-
volves oppositely charged species flowing in the same
direction). Stern et al. [5] treat the problem of the return
of the negative-ion density to its steady state value by us-
ing a simple ballistic kinetic theory. This approach was
very successful in studying the negative-ion evolution for
times of order R /vy, where R and vy, are the radius of
the cylindrical region in the plasma affected by the laser
beam and the thermal velocity of the negative ions.
Friedland, Ciubotariu, and Bacal [7] first included the
effects of self-consistent electric field. They modeled this
plasma via a hybrid fluid-kinetic approach in which the
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electrons and positive ions are described by the fluid
theory, while the negative ions are treated within the
ballistic kinetic theory which was verified experimentally
[6]. Therefore, it is of current interest to develop a com-
plete self-consistent description of such negative-ion plas-
ma.

Let us consider the relaxation process of plasma in the
laser beam channel in more detail. After applying the
laser pulse, the electron density inside the laser channel is
higher than outside it, since the negative ions are des-
troyed. The additional electrons are monoenergetic with
energy near 0.45 eV. As the average electron velocity is
markedly in excess of the positive ion velocity, the elec-
trons inside and outside the channel mix to an equilibri-
um state with a density inhomogeneity across the chan-
nel. As a result, an electric field appears and keeps the ex-
cess electrons inside the channel. It is well known (see
Sec. II) that the potential of this field is related to the
electron density by the Boltzmann relation. Further-
more, the plasma dynamics will be related to the ion
motion. In the case of low electron temperature, when
the electric field is weak, the ion velocity will be close to
the ion thermal velocity; however, when the electric field
is strong (for hot electrons) the ion velocity can exceed it.
In the latter case, one should take into account the self-
consistent electric field when determining the negative-
ion temperature.

Thus we came to two conclusions. First, one needs to
solve the self-consistent problem to determine the limit of
the ballistic model and to find the negative-ion tempera-
ture. Second, the self-consistent plasma dynamics is of
interest near the surface separating the two plasma re-
gions. The ion dynamics is similar in the planar and cy-
lindrical geometries until the negative ions travel a dis-
tance of the order of the laser radius; from there on,
differences related to the geometry will become impor-
tant. Friedland, Ciubotariu, and Bacal [7] have shown
that in the ballistic approximation the overshoot is simi-
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lar in the planar and cylindrical geometries. Further-
more, the charged particles going to the axis of the
cylinder are lost on the Langmuir probe and do not play
any role in the relaxation process. Thus the cylindrical
geometry is of secondary importance and we can examine
the one-dimensional problem in self-consistent treatment
in the Cartesian system. The solution of this self-
consistent problem both has an independent meaning and
represents the initial approximation for future negative-
ion plasma research.

We will consider collisionless negative-ion plasmas.
This obviously imposes a restriction on the time con-
sidered, which should be shorter than the elastic and in-
elastic collision times. Here, the considered time is the
channel plasma relaxation time ¢,=R; /v;, where R, is
the laser beam radius, v; is the average negative-ion ve-
locity, which has the same order of magnitude as the ion
thermal speed. The rough upper estimate for the relaxa-
tion time is 1 us for R, ~0.01 m and v; ~10* m/sec.
Since the frequency of Coulomb collisions of particles of
charge e and mass M with particles of the same charge, of
density n, is v=ne*L /[(16mey)*M*v3], where the
Coulomb logarithm L ~ 10, and v —the relative average
velocity of the colliding particles. Substituting the
relevant parameters of the experiment (Ref. [5]) n ~ 10"
m~ 3, v~vy~7.5X10% m/sec (for Ti ~0.2 eV), we find
the collision time 7=1/v~7 us, which is longer than the
characteristic relaxation time of this problem. It can be
noted that for faster particles the collision frequency goes
down. The collision time (Nowv)~! for the collision of
negative ions with particles of the residual gas is at least 5
us for the gas pressure used in the experiment (with
0~3X10"Y m? and N ~9X 10! m ™3, see also Ref. [5]).
Therefore, the collisionless approximation is appropriate
for our investigation.

To solve this problem, we can apply the method of
self-similar solutions, well known in hydrodynamics. We
take the approach of Gurevich, Pariiskaya, and Pi-
taevskii [8]. They used the self-similar method to solve
the self-consistent problem of the plasma expansion into
vacuum or plasma. They generalized the method of the
self-similar variables and solved the kinetic equations for
plasmas, consisting of different species [9-11]. Ivanov
et al. [12—-14] showed that the propagation of a space-
localized group of hot electrons into plasma is also self-
similar. It should be noted that these nonlinear problems
cannot be completely solved in analytical form but the
knowledge of the characteristic peculiarity of the physi-
cal problems can lead to the simplification of the model
and to a fundamental understanding of the physical pro-
cesses.

For this problem the self-similar approach is supported
by extensive experimental data [4—7]. In Ref. [5], for ex-
ample, these data showed that a self-similar motion takes
place outside the laser channel, i.e., that the motion is a
function of r/t only. It was also shown that the Lang-
muir probe, located on the axis of the channel exhibits a
signal which is a function of r /¢ [see Fig. 4(a) in Ref. [6]].

The distribution function of detached electrons can
differ from a Maxwellian one, but in the experiments of
Refs. [5] and [6] their mean energy is close to that of
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background electrons [4]. Thermalization of photode-
tached electrons for densities present in the experiments
[5,6] we refer to occurs rapidly and so we can consider
the electrons to be Maxwellian. In the general case, a
different electron distribution should be considered.

One of the interesting phenomena connected with the
laser detachment and described in Ref. [4] is the dip in
the electron density time evolution which was denoted as
“overshoot.” A probe located on the axis of the system
showed that the electron density can decrease below the
background electron density, before retuning to the
steady state.

In this paper we present a self-similar one-dimensional
theory of low pressure hydrogen plasmas containing neg-
ative as well as positive ions and electrons.

In Sec. II the mathematical treatment and the assump-
tions and restrictions are discussed. Section III presents
the self-similar solution obtained when the positive ions
are at rest. Thus we demonstrate the role of electric field
on the negative-ion motion. In Sec. IV the positive-ion
motion is considered and we present the self-similar
motion of both positive and negative ions. The discus-
sion of the results obtained and of future research is made
in Sec. V.

II. THE MODEL AND THE BASIC EQUATIONS

Let us consider two plasma regions separated by the
plane x =0. The first region (x <0) consists of electrons
and negative as well as positive ions. The second plasma
region (x > 0) consists of electrons and positive ions only.
Thus, the fast laser destruction of negative ions into
atoms and electrons takes place in the second region for
x >0. As stated earlier, we study the one-dimensional
problem only. The distribution functions of the negative
ions F; (x,v,t) and that of the positive ions F,-+(x,v,t)
satisfy the kinetic equations
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where M _ and M, are the negative and positive ion
mass, respectively. Z is the ion charge number, ® is the
electrostatic potential. We can write a few equations as
(2) for all the plasma species, but in this paper, for
simplification, we are dealing with one-plasma positive
species only. As in the classical theory, the assumption
of quasineutrality is used for the description of slow plas-
ma streams

N,+N7 =N, 3)

where N,, N7 = [*_F;7dV, and N;*= [* F;dV are
the densities of electrons, negative ions, and positive ions,
respectively.

From the first moment after photodetachment the
quasineutrality Eq. (3) is valid. Electrons, being very fast
compared to negative ions, penetrate into the negative-
ion plasma region on a few Debye lengths. The rising
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electric field acts on the negative ions and after some time
the width of the electron—negative-ion front will be much
larger than the Debye length.

To complete this set of equations, we have to relate the
electron density N, and the electrostatic potential .
Strictly speaking, we can write the kinetic equation for

electrons. But for this problem the small-scale motion is
of no interest; thus we can write the well-known
Boltzmann relation

N, (®)=n,exple®/T,) , 4)

where T, is the electron temperature and 7, is the elec-
tron density before photodetachment. The dependence of
the electron density versus the adiabatic electric potential
for a Maxwellian electron distribution is given, for exam-
ple, in Ref. [15] where it is shown that with the assump-
tion 7>>L /V, (1 and L are the typical time and length
of the process, respectively; V, is the typical velocity of
the electrons) the electron density has the Boltzmann
form (4). This equation was also examined by Mora and
Pellat [16] for the problem of plasma expansion into vac-
uum. They showed that Eq. (4) was true for physically in-
teresting electron parameters. It was shown by Gurevich
and Pitaevskii [11] that if the electron distribution func-
tion is non-Maxwellian and the potential does not
represent a well for electrons, the electron density has the

form
5 q> 172
N@)= [ |Fav [ 142
_y 172
+[ [ Rav ) |1+ 22 NG
where V=V —2e®/m, F, is the electron distribution

function for @ =0. The densities of (5) are shown in Fig. 1
for several distribution functions. It can be seen that the
curves are close for small values of the potential and
diverge for larger values.

We see that the system of Egs. (1), (2), (3), and (4) or (5)
can depend on X and ¢ in the combination X /¢. In this

1
-2e 0 /T,

FIG. 1. The dependence of electron density vs potential
for dlstrlbutlon function. 1: f,=(1/Vmexp(—v?), 2:
, V>0

[(l/l)u ﬁﬂu<v off 3: fO'—O 8f1+0 2f2
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case the system has a solution depending on X /¢ if the in-
itial conditions depend on X /¢t only. Thus we can find
the solution as in hydrodynamics using the self-similar
variables. The equations become

afi” 439 ofy
—65 ag =0, ©6)
9 ZM _ of
(v—§) fi_ 3p 9 =0, %)

3 M, 9 ov

where we used normalized values ¢=2e®/T,, v =V /V,,
E=x/tV,, f =F/nyV,, where V,=(2T,/M _)"?, which
we denote as the negative-ion acoustic velocity, and n is
the background plasma density. The Boltzmann relation
(4) is now

n,(@)=n, /ngexp(@/2) . (8)

III. THE SOLUTION WHEN POSITIVE IONS
ARE AT REST

In order to study the motion of negative ions in plas-
mas, we first consider this motion under the condition
M, =c. This is consistent with a physical situation
where the positive-ion mass is larger than the negative-
ion mass (negative ion H™ and positive ion Hy*, or Cs™
or another heavy positive species). In this case, the posi-
tive ions are considered to be at rest and we can use this
condition at least at the early stage of the relaxation of
the illuminated plasma cylinder. The effect of positive-
ion motion will be discussed in Sec. IV.

Thus we have to solve the nonlinear Egs. (3), (6), and
(8). An obvious transformation reduces this set to the
nonlinear equation
(v —§)~—+2—ln [1—f frd ]——o ©
For £— — o the plasma is unperturbed and the distribu-
tion function is Maxwellian,

fio W=ng exp[ —(v/v;*1/(v;V7) , (10)

with v?=T, /T,. It is clear that Eq. (9) with the initial
condition Eq. (10) has two parameters: n; (initial
negative-ion density) and v; (thermal velocity). This
equation was solved numerically by the method of
characteristics. The equation for the curves along which
the value of the negative-ion distribution function is con-
stant [these curves are the characteristics of Eq. (9)] has
the form

w6 —F(g)—2~—1n [1—f°° f,.—dv] . an
9 9 —

Solving the characteristic equation (11) for the values
of initial velocities v, y=v.;, +(i —1)8v, where
i=1,2,...,N,, we find the new velocity values for the
new point £=§,+AE.

Now, at point £ we find the negative-ion density
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N,

v

> {fio o)+ fio (o —1)]}

ne= " fiodv == 3

X[vk(é')—vk_l(g)]

and, further, the new value of F. In the next step, the cal-
culation will be repeated for the new value of . Figures
2, 3, and 4(a) show the results of a numerical simulation
of the self-similar motion of the plasmas components for
the initial parameters

v;=0.2, ie., Ty /T,=4X1072,
nia =0.2 ’ i-e-’ N,a :0.2,”0 .

For the initial value of §;= —2 the negative ions have
Th‘e Mazxwellian distribution function that is cut off for

vi>1.

One can easily interpret the curve in Fig. 4(a). This
curve shows either the dependence versus the actual
length x at some time, or the uniform expansion around
the point £=0 with time, the given density n,” moving
with its own velocity. The convergence of all the charac-
teristics toward the line £=v (Fig. 2) is accompanied by
the acceleration of ions (Fig. 3) and, respectively, by the
decrease of ion density [Fig. 4(a)]. For comparison, the
field-free ion expansion that was described by the equa-
tion

ng(£)= f:f,.g(v,g)dv

is shown in Fig. 4(a) by the dotted line. One can note
that the electric field accelerates the negative ions.

The time dependence of the negative-ion density can be
reconstructed using Fig. 4(a). It corresponds to a motion
of point £ from + <« to 0.

One can see large-scale oscillations on the curves of
Figs. 2 and 4(a). They show that the expansion of nega-
tive ions is not monotonous. These oscillations are
smoothing down with the increase of negative ion tem-
perature. The variation of the electron density in time
and space can also be inferred from Fig. 4(a), since, due
to the quasineutrality, Eq. (3), n,=1—n;".

The self-similar solution has no length or time parame-
ter. In order to present the results in a more informative

=4
n
[ T S

0.5 1

FIG. 2. Characteristics of negative ions.
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FIG. 3. Negative-ion distribution function for 1: £=—1; 2:
£=0.1;3: £=0.5;4: £=0.9.

way, let us introduce a length scale L equal to the radius
of the laser channel. We can thus conveniently illustrate
the dependence of negative-ion density on time, measured
in units L/V, [see Fig. 4(b)]. In terms of planar
geometry, L is the distance between the probe and the
plane boundary of negative-ion plasma at initial time. It

0.08

0.06 ~

'“ 0.04 -

0.02 -

FIG. 4. (a) Dependence of negative-ion density on & for
T;/T,=0.04. Thick full line curve—with self-consistent elec-
tric field; dotted line—ballistic theory with the same tempera-
ture; thin full line—ballistic theory with T7;/7,=0.18. (b)
Dependence of negative-ion density on time 7=tV /L at x =L
for T, /T,=0.04.
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FIG. 5. Ratio of negative-ion temperature calculated with
use of ballistic model T, to one calculated with use of self-
consistent electric field vs negative-ion n;5/n,0. 1, is the plas-
ma density.

should be pointed out that the asymptotical value of the
negative-ion density is lower by a factor of two than the
initial one due to planar geometry, i.e,. at initial time the
negative-ion plasma occupies the half space x <0 and ex-
tends from x =—o up to x =+ at ¢t tending to
infinity.

For comparing the ballistic model and the self-
consistent one we used the following method. In Ref. [6]
the ion temperature was found by fitting the theoretical
curve to the experimental data. Using a similar method,
we find first the theoretical curve with electric field. We
consider this as an ‘“‘experimental” curve and fit to it
another theoretical curve, obtained in the ballistic ap-
proximation which gives the “ballistic” negative-ion tem-
perature T, . Figure 5 shows the variation of the ratio
Ty /T, as a function of the ratio n;; of the negative-ion
and positive-ion densities. Figure 5 shows that the ballis-
tic model is valid when the ratio of negative-ion to
positive-ion densities is lower than 0.1, which was the
case in the work described in Refs. [4—6]. The present
results describe possible effects if such studies were

0.2 T T

0.15 - b

0.1 - -

0.05 + —

ol I 1 1
-1 -0.5 i 0 0.5 1

FIG. 6. Dependence of negative-ion density upon £ for a dis-
tribution function f, (see Fig. 1) with v /v, =1.22 (full curve)
and for Maxwellian distribution function with v, (thin curve).
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effected at a high ratio of negative-ion to positive-ion den-
sities. Figure 6 shows the dependence of negative-ion
density upon & for different electron distribution func-
tion.

The ballistic theory applies when the negative-ion den-
sity evolution coincides with that for field-free expansion
(Fig. 4, dotted line). Figure 5 has shown how the validity
of this theory is limited to low negative-ion fractions.
The ratio of temperatures of various plasma species also
affects the range of validity. Both experiment and calcu-
lation can prove this validity.

IV. THE ROLE OF POSITIVE-ION MOTION

We have already seen that when n_ /n >0.1 the neg-
ative ions are accelerated by the electric field and the ion
velocity can be larger than the ion thermal velocity. An
effect that could change our result is the finite positive-
ion mass. Therefore, we have to consider now the set of
equations (3), (6), and (8) and the additional Eq. (7). Let
us consider a single positive-ion species. The equation of
characteristics for Eq. (7) is

dv
(v §)a§ eF(£), (12)
where e=ZM _ /M , .

Next we consider the case € <1 and examine the move-
ment of positive ions in the field that was created by the
counterflow of negative ions and electrons (monopolar
drift). Since the positive ions exist over all the space in
the initial plasma, we use the normalized Maxwellian dis-
tribution function for positive ions at §—&;, and at
£— — &, in Maxwellian form:

f,?)'(v)::Jri/—;exp(—(v/vf)z) , with(v;" =T /T, .

(13)

The method of numerical calculation of Eq. (12) was

similar to that for Eq. (11) and was described above.
Figure 7 shows the characteristics of positive ions. It

is seen that far from the line v =§ the characteristics are

0.5

r T T 1

FIG. 7. Characteristics of positive ions with T;* /T,=0.01
and M /M _=5.
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FIG. 8. Dependence of positive-ion density upon &.
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FIG. 9. Minimum value of electron-density perturbation in
the overshoot region as a function of positive-ion mass.
ng /ng=0.2; T, /T,=0.04; T;* /T,=0.01.
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FIG. 10. Minimum value of electron-density perturbation in
overshoot region as a function of positive ion temperature.
ng /ng=0.2; T, /T,=0.04; M . /M _=5.
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parallel to the £ axis. In the vicinity of the line v =§£ the
characteristics coming from £=— o first deviate and
then tend to the line v =§. The characteristics from
&=+ o monotonically decline, tending to the line v =§
as well. The larger M _, the narrower the region adjacent
to the line v =&, where the characteristics are not straight
lines. This region vanishes in the limit M, — o when
there is no positive-ion perturbation due to negative-ion
motion.

Figure 8 shows that the positive ions are pushed out
from the counterflow region, a depression in the
positive-ion density being formed for a certain value
£>0. A depression occurs in the the electron density as
well. This depression (the overshoot) was observed and
interpreted [4] as the result of the joint depletion of
positive-ion and electron densities after photodetach-
ment. Friedland, Ciubotariu, and Bacal [7] showed
theoretically that the amplitude of the overshoot depends
on the ratio T, /T . Note on Fig. 8 that the depression
in the positive-ion density producing the observed
overshoot arises near the boundary of two plasma regions
and propagates to the detached right plasma region. On
the other hand, a maximum of the ion density occurs in
the left plasmas region (£ <0).

The amplitude of the overshoot is a function of mass
and temperature of positive ions (see Figs. 9 and 10). We
see that the growth of both the positive ion mass and
positive-ion temperature causes the reduction of the
overshoot amplitude.

V. DISCUSSION

We have shown that the self-consistent electric field
can influence the relaxation of the plasma in the laser
photodetachment channel and affect the recovery of the
negative-ion density after photodetachment. For higher
ratio n_ /n, and low T_ /T, <<1 this could modify the
value of the ion temperature determined from this
recovery. The actual negative-ion temperature could
then be lower than that determined from the ballistic
model.

We have considered the role of the electric field in
one-dimensional treatment in plane geometry. In the
context of the quasineutrality assumption, we showed
that these problems have self-similar solutions. It is pos-
sible to solve the problems with two boundaries and in a
different geometry. For these problems, new variables
can appear but the self-similar character of the solutions
remains. We have examined the simple self-similar vari-
able x /t. From our viewpoint this variable suits to the
experimental data most closely. Generally speaking, the
solutions depend on a self-similar variable in general form
Q(x,t). This variable allows one to describe the expan-
sion of the boundary, the Riemann simple, waves, and the
formation of shock waves.

It follows from our study that oscillations of negative
ion and electron densities take place for relatively cold
negative ions (T_ /T, <<1), the oscillation vanishing as
the negative-ion temperature increases. Similar oscilla-
tions were described in Ref. [17] for the expansion of the
plasma with two ion species.



52 SELF-CONSISTENT CHARGED-PARTICLE MOTION IN . ..

We have examined theoretically the overshoot and
confirmed the statement made in Ref. [4] that the positive
ions were pushed out from the boundary region (£§~0) to
the external region (£ <0). The experimental investiga-
tions using different negative-ion plasmas will allow us to
study these phenomena in more detail.

We studied the effect of the self-consistent electric field
on the dynamics of positive ions and showed that this
field could produce the overshoot in the electron density,
which was observed in the experiments. In order to effect
a quantitative comparison with experiment, we intend to
solve this problem for the case of the cylindrical
geometry. The finite size of the laser beam channel can
lead to sound waves but these are not observed in actual
experiments.

Thus the present theory is in qualitative agreement
with the experimental data. We can say with reasonable
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confidence that there will also be quantitative agreement
and the diagnostic method can be developed. To sum up,
we note that this method has broader applications than
we claim in this paper and we will apply these results to
the actual geometry used in experiments.

The present work is relevant to collective charged par-
ticle acceleration. Future calculations using this ap-
proach could be a useful tool in studying different aspects
of collective acceleration.
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